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Abstract 

This study introduces an enhanced numerical approach for analyzing the dynamic 

behavior of a rotor-bearing system subjected to unbalanced excitation from a gearbox drive 

shaft. The Newmark-β method with the integration of a variable time-step algorithm was used, 

allowing the system to be solved rapidly and accurately without compromising stability. This 

technique enables a precise computation of displacement and torsional deformation of the 

rotating shaft during its operational cycle. The proposed computational model is validated 

against experimental data, showing deviations of displacement in normal operation below the 

critical speed of about 6%. A comprehensive parametric analysis is conducted to evaluate the 

influence of rotational speed, trial mass, and initial phase angle on the system dynamics. The 

findings confirm that our enhanced numerical approach yields rapid convergence and reliable 

predictions, making it a valuable tool for dynamic analysis of rotating systems. 

Keywords: Transmission shaft; unbalanced excitation; phase angle; Newmark-β method; 

dynamic modelling; rotor-bearing system. 
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1. Introduction 

The drive shafts in gearboxes are common components with variety of applications in 

industries, operating at various speeds and load types. Among many factors causing failure of 

shafts, vibration due to unbalance is a major cause. Single and coupled vibration modes, 

including torsional, longitudinal and transverse vibrations induce fatigue, fracture and 

tribological issues on the rotating shaft components [1-3]. These vibrations result in 

displacement, performance of gear transmission, wear and cracks [4-6].  

Many studies have been carried out on dynamic aspects of the of rotor systems. The 

modelling of the rotor systems often uses the Jeffcott rotor model having a massless axis and a 

mass disk placed in the middle of the shaft. Modern analytical methods have been utilized to 

provide a foundational understanding of rotor dynamics and to conduct simple model 

experiments [7, 8]. In addition, Yuan et al. [9] and Hong et al. [10] studied a rotor system with 

a dynamic model, in which a disc is placed in the middle of a massless elastic rotating shaft. 

The equations of motion are obtained to Lagrangian dynamics for transverse - torsional 

vibrations. Han and colleagues [11] derived the equation of motion by assuming that the diesel 

engine drive system can be approached as a simple rotor model such as the Jeffcott rotor. A 

modified version of this rotor model was also used for analysing the coupled torsional–

transverse vibrations of a propeller shaft resulting from misalignment induced by shaft rotation 

[12]. Besides, Das et al. [13] modelled a flexible rotating shaft system subject to bending and 

torsion coupled with the shaft and disk moving away from the center point of the shaft. In these 

studies, it is evident that shaft displacement caused by vibration is a complex problem. 

Therefore, it is necessary to investigate the shaft's displacement in detail due to unbalance, using 

a new approach and model in the study of rotor dynamics. 

The Newmark-β method, that is a widely used numerical integration technique in finite 

element analysis, is particularly effective for simulating dynamic systems. A study by Kong et 

al. used this method to analyze the dynamic characteristics of spur and helical gear systems 

[14], while a subsequent study focused on the influence of housing flexibility on gear 

transmission dynamics [15]. Ma and colleagues applied an improved Newmark-β method to 

determine nonlinear dynamics and reduce crankshaft torsional vibration [16]. An enhanced 

version of the method was proposed for long-term simulations [17], offering improved 

convergence in evaluating the effects of nonlinearities on engine crankshaft torsional behavior.  

Collectively, these studies confirm that the Newmark-β method is a suitable and reliable tool 

for addressing time-varying oscillation problems. 
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In general, the current studies lack experimental evidence to support the theoretical 

computation. This study represents a computational dynamic model for a rotor-bearing system 

under unbalanced excitation, using the Newmark-β method with a variable time-step algorithm 

to determine the unbalance amount and shaft displacement. Various key experimental 

parameters, including rotational speed, trial mass, and initial phase angle, are put into account. 

The displacement and the amount of unbalance, determined from experiment, are compared 

with the numerically computational values to verify the validity of the computational model 

and thus to evaluate their effects on system dynamics. The motional orbit, representing shaft 

displacement, is also determined to evaluate the influence of the unbalance on the deflection of 

the shaft.  This will allow to predict the fatigue strength, thus to accurately predict performance 

during operation. 

2. Dynamic Model of the Rotor System 

2.1. The Proposed Model  

This issue arises from the eccentricity and imbalance of rotating components. If the gearbox 

operates under long-term conditions, it may lead to wear and eventual failure due to fatigue 

fracture. Fig 1 shows a shaft assembly in the gearbox of a lathing machine, comprising the drive 

shaft 3, bearings 1 and 5, and gears 2 and 4. Fig 2 represents the schematic diagram of a 

generalized model comprising a shaft and various assembled disks. 

1 2 3

4

5

 

Fig 1. Gear shaft assembly in the lathe gearbox. 
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1 2

 

1. Rotating shaft – 2. Disk 1 – 3. Other disks  

Fig 2. Schematic diagram of the rotor–bearing system. 

2.2. Parameters of the Model 

The proposed model of transmission shaft with two disks is shown in Fig. 3. The 

specimens for evaluating the fatigue strength of metallic materials were used, according to ISO 

1143:2010. This specimen type is also well-suited for evaluating location to failure [18]. Seven 

nodes, from node 1 to node 7, on the rotating shaft are selected to be investigated. Nodes 1 and 

7 are the bearing positions. Nodes 2 and 6 are the disk placements and nodes 3 and 5 correspond 

to the positions with the maximum cross-section on the shaft. Node 4 has the smallest cross-

section, where the fracture occurs. 
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a)   Shaft element model with two disks b) Cross-section showing eccentric  

mass location 

Fig 3. Forces and unbalance positions of rotor-bearing system with eccentric masses 

The displacement vector qi for the shaft nodes i (i = 1 to 7) is: 

 𝑞𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝛼𝑖]
𝑇 (1) 

where the displacements xi and yi along the X- and Y-axes and torsional angle αi at the 

investigated positions are 

 𝑥𝑖 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]𝑇; 𝑦𝑖 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7]𝑇 

𝛼𝑖 = [𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝛼7]𝑇  

{𝑥𝑖 = 𝑥𝑛 𝑜𝑟 𝑥𝑖 = 𝑥𝑚 + 𝑒𝑚𝑐𝑜𝑠𝜑𝑚;  𝑦𝑖 = 𝑦𝑛 𝑜𝑟 𝑦𝑖 = 𝑦𝑚 + 𝑒𝑚𝑐𝑜𝑠𝜑𝑚 ∶  

 𝑛 = 1, 3, 5, 7 ;   𝑚 = 2, 4, 6 

Since the loads are applied onto the gears at nodes 2 and 6, the rotation angle on the shaft 

segment between nodes 2 and 6 are thoroughly investigated. The torsional angles at nodes 3 

and 5 are assumed to be small and negligible (α3 = α5 = 0). Thus, the torsional angles at nodes 

2, 4, and 6 are 𝜶𝒊 = [𝜶𝟐, 𝜶𝟒, 𝜶𝟔]𝑻 where i = 2, 4, 6. The governing equation for the rotation 

angle is given as: 

  ∅𝑖(𝑡) = 𝛼𝑖 + 𝜔𝑖𝑡 + ∅0𝑖
          (2) 

where ∅𝑖(t) is the total rotation angle at node i as time t; ∅0𝑖
 is the initial phase angle at node i; 

𝛼𝑖 is the torsional angle at node i; 𝜔𝑖 is the angular velocity at node i (i = 2, 4, 6). The kinetic 

energy of the system is represented as: 
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 𝑇 = 𝑇𝑡 + 𝑇𝑟 =
1

2
{𝑥̇}𝑇[𝑀𝑐]{𝑥̇} +

1

2
{𝑦̇}𝑇[𝑀𝑐]{𝑦̇} +

1

2
{𝜑̇}𝑇[𝐽𝑐]{∅̇}  (3) 

where Tt is translational kinetic energy; Tr is rotational kinetic energy; {𝒙̇}, {𝒚̇} are the vectors 

of translational velocities in the X and Y directions; {∅̇} is the vector of angular velocities of 

the components;  [𝑴𝒄] is the mass matrix corresponding to the system from node 1 to node 7; 

[𝑱𝒄] is the static moments of inertia concerning the study nodes 2, 4, 6. The elastic potential 

energy of the system is: 

 𝑉𝑐 =
1

2
{𝑥}𝑇[𝐾𝑥]{𝑥} +

1

2
{𝑦}𝑇[𝐾𝑦]{𝑦} +

1

2
{𝛼}𝑇[𝐾𝑡]{𝛼}  (4) 

where [Kx] and [Ky] are respectively the stiffness matrices corresponding to translational 

stiffness in the X- and Y-axes, [Kt] is the torsional stiffness matrix related to angular 

displacements. According to Fig. 3, an examination of the shaft segment from node 2 to node 

6 represented by l3 to l6 was performed. Figure 4 shows the spring modeling of the shaft 

segment. 

 

Fig 4. Modelling of the study shaft segment from nodes 2, 4 and 6. 

In the torsional shaft problem, x2, x4, and x6  are equated to the torsional angles α2, α4  and α6 of 

the shaft at nodes 2, 4 and 6, respectively. From the modelling of the shaft segment in Fig. 4, 

the elastic potential energy is written as:  

 𝑉 =  
1

2
𝑘𝑡2

𝛼2
2 +

1

2
𝑘𝑡4

(𝛼2 − 𝛼4)2 +
1

2
𝑘𝑡6

(𝛼4 − 𝛼6)2  (5) 

The dissipated energy of the system is given by: 

 𝐷 =
1

2
[𝑥̇]𝑇[𝐶𝑥]{𝑥̇} +

1

2
[𝑦̇]𝑇[𝐶𝑦]{𝑦̇} +

1

2
[𝛼̇]𝑇[𝐶𝑡]{𝛼̇}  (6) 

where D is the total energy dissipated due to damping in the system; [Cx], [Cy], and [Ct] are 

respectively the damping matrices corresponding to translational damping in the X, Y directions 

and axial torsional damping. The dissipated energy due to damping is written as: 
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 𝐷 =  
1

2
𝐶𝑡2

𝛼̇2
2 +

1

2
𝐶𝑡4

(𝛼̇2 − 𝛼̇4)2 +
1

2
𝐶𝑡6

(𝛼̇4 − 𝛼̇6)2  (7) 

where 𝑪𝒕𝟐
, 𝑪𝒕𝟒

𝒂𝒏𝒅 𝑪𝒕𝟔
 are the torsional damping at nodes 2, 4, and 6. The Lagrange's equations 

of the second kind can be written in terms of the system as follows [19]: 

  𝐿 = 𝑇 − 𝑉  (8) 

   
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕{𝑞̇𝑖}
) −

𝜕𝑇

𝜕{𝑞̇𝑖}
+

𝜕𝐷

𝜕{𝑞̇𝑖}
+

𝜕𝑉

𝜕{𝑞̇𝑖}
= 𝐹𝑖 

where T is the total kinetic energy, V is the total potential energy of the system;  𝑭𝒊 = 𝑭𝒈𝒊
+

𝑭𝒖𝒊
;  𝑭𝒈𝒊

 is force due to the mass of the node; 𝑭𝒖𝒊
 is centrifugal force due to unbalance. The 

differential equation of motion for the rotor at this time is:  

  [𝑀]{𝑞̈} + [𝐶]{𝑞̇} + [𝐾]{𝑞} = {𝐹𝑖} = {𝐹𝑔𝑖
} + {𝐹𝑢𝑖

}  (9) 

where [𝑴]𝟏𝟕𝒙𝟏𝟕 is the mass matrix of the system; [𝑪]𝟏𝟕𝒙𝟏𝟕 is damping matrix; [𝑲]𝟏𝟕𝒙𝟏𝟕 is a 

stiffness matrix. The displacement vector {𝒒}𝟏𝟕𝒙𝟏 includes the displacements in the X-direction, 

Y-direction, as well as angular rotation,  {𝑭𝒊}𝟏𝟕𝒙𝟏 is excitation force vector: 

{𝑭𝒈𝒊
}

𝑻
=  [𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎 𝒎𝟏𝒈 𝒎𝟐𝒈 𝒎𝟑𝒈 𝒎𝟒𝒈 𝒎𝟓𝒈 𝒎𝟔𝒈 𝒎𝟕𝒈  𝟎 𝟎 𝟎 ] 

{𝐹𝑢𝑖
}

𝑇
=  [0 𝐹𝑢𝑥2

 0 𝐹𝑢𝑥4
 0 𝐹𝑢𝑥6

 0 0 𝐹𝑢𝑦2
 0 𝐹𝑢𝑦4

 0 𝐹𝑢𝑦6
 0 𝐹𝑢𝛼2

 𝐹𝑢𝛼4
 𝐹𝑢𝛼6

 ]       (10) 

By solving equation (10) for i = 2, 4, 6; we obtain: 

𝐹𝑢𝑥𝑖
= 𝑚𝑖𝑒𝑖(𝜑̇𝑖

2cos 𝜑𝑖 + 𝜑̈𝑖sin 𝜑𝑖)  

𝐹𝑢𝑦𝑖
= 𝑚𝑖𝑒𝑖(𝜑̇𝑖

2 sin 𝜑𝑖 − 𝜑̈𝑖 cos 𝜑𝑖) 

 𝐹𝑢𝛼𝑖
= 𝑚𝑖𝑒𝑖(𝑥̈𝑖𝑠𝑖𝑛 𝜑𝑖 − 𝑦̈𝑖𝑐𝑜𝑠 𝜑𝑖)  

2.3. Solution Method 

Using the Newmark time-stepping analysis method to solve Equation (9), the following 

variables and matrices are involved: {𝒒𝒊}, {𝒒̇𝒊}, [𝑴], [𝑪], [𝑲], {𝑭𝒈}, {𝑭𝒖}, ∆𝒕, 𝒕𝒊, 𝜸, 𝜷 

Take the derivation of Equation (9), we have: 

   {𝑞̈𝑖} =  [𝑀]−1(−[𝐶]{𝑞̇𝑖} − [𝐾]{𝑞𝑖} + {𝐹𝑔} + {𝐹𝑢})  (11) 

where { 𝑞𝑖+1 = 𝑞𝑖 + ∆𝑡𝑞̇𝑖 + (
1

2
− 𝛽) ∆𝑡2𝑞̈𝑖 + 𝛽∆𝑡2𝑞̈𝑖+1 𝑞̇𝑖+1 = 𝑞̇𝑖 + (1 − 𝛾)∆𝑡𝑞̈𝑖 +

𝛾∆𝑡𝑞̈𝑖+1 𝑀𝑞̈𝑖+1 + 𝐶𝑞̇𝑖+1 + 𝐾𝑞𝑖+1 = 𝐹𝑖+1    (12) 
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Transforming Eq. (12), we obtain:  

[𝑀 + 𝐶𝛾∆𝑡 + 𝐾𝛽∆𝑡2]𝑞̈𝑖+1 = 𝐹𝑖+1 − 𝐶[𝑞̇𝑖 + (1 − 𝛾)∆𝑡𝑞̈𝑖] − 𝐾 [𝑞𝑖 + ∆𝑡𝑞̇𝑖 + + (
1

2
−

𝛽) ∆𝑡2𝑞̈𝑖]       (13) 

Equation (13) can be generalized as:  

  [𝐾̂]{𝑞̈𝑖+1} = {𝐹̂𝑖+1}        (14) 

where  [𝐾̂] is the effective stiffness matrix, determined as: 

                [𝐾̂] = [𝑀 + 𝐶𝛾∆𝑡 + 𝐾𝛽∆𝑡2]  (15) 

{𝐹̂𝑖+1} is the effective force vector, determined as: 

      𝐹̂𝑖+1 = 𝐹𝑖+1 − 𝐶 [[𝑞̇𝑖 + (1 − 𝛾)∆𝑡𝑞̈𝑖] − 𝐾 [𝑞𝑖 + ∆𝑡𝑞̇𝑖 + (
1

2
− 𝛽) ∆𝑡2𝑞̈𝑖]] (16) 

In this study, the implicit Newmark–β method was employed, since it does not require 

adherence to the time step condition as ∆𝑡 ≤
2

𝜔𝑚𝑎𝑥
=

2

319
= 0.006s. The parameters 𝛾 and 𝛽 

were adjusted during the time-stepping loop and set to 𝛾 =
1

2
 and 𝛽 =

1

4
. A constant time step 

of Δt = 0.01s was selected for the simulations to ensure stability and computational efficiency 

[20]. Figure 5 shows the algorithm flowchart, used for computing the displacement 𝑞𝑖, the 

velocity 𝑞̇𝑖, and the acceleration 𝑞̈𝑖. 
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Fig 5. A flowchart for dynamic response of the rotor system. 

Yes 

No 

Calculate the initial acceleration 

𝑞̈0 = {𝑀}−1({𝐹0} − [𝐾]{𝑞0}) 

For 𝑖 =1 to the total number of time steps 

Solve equation (12) for 𝑞𝑖+1, or solving the 

equation [𝐾̂]{𝑞̈𝑖+1} = {𝐹̂𝑖+1} 

Solve equation (13) and (14) for 𝑞̇𝑖+1 

and 𝑞̈𝑖+1 

Converge? 

Begin 

Input the boundary and initial conditions 𝑞0và 𝑞̇0, 

number of time steps, size of time step, 

acceleration parameter t, ,  

Output displacement 𝑞𝑖 , velocity 𝑞̇𝑖, 

acceleration 𝑞̈𝑖 at time step i 

End 
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3. Experimental Procedure  

An AISI 1045 steel transmission shaft as shown in Fig 3 with the unbalances m2 and m6 was 

prepared to investigate the behavior of nodes 1 to 7 during rotational operation. Table 1 shows 

the geometry dimensions and mechanical properties of the shaft [21-23]. 

Table 1. Symbols, parameters, and unit of power transmission shaft system 

No. Parameters Symbols Unit Value 

1 Shaft length L m 0.256 

2 Section lengths l1 = l8 m 0.008 

3 Section lengths l2 = l7 m 0.045 

4 Section lengths l3 = l6 m 0.040 

5 Section lengths l4 = l5 m 0.035 

6 Shaft diameter dshaft m 0.012 

7 Disk diameter Ddisk m 0.1 

8 Disk thickness B m 0.02 

9 Initial phase angle of disk 1 ∅02
 rad 0 

10 Initial phase angle of disk 2 ∅06
 rad 0 

11 Unbalance eccentricity at node 2 e2 m 4.7x10-3 

12 Unbalance eccentricity at node 6 e6 m 4.7x10-3 

13 Stiffness of rotor Kr N/m 7x107 

14 Stiffness of bearing Kb N/m 7.2x106 

15 Stiffness of torsional shaft Kt Nm/rad 1x105 

16 Damping of bearing C N.m/s 20 

17 Friction coefficient µ  0.1 

18 Poisson’s ratio  υ  0.3 

19 Density  kg/m3 7.8x103 

20 Shaft mass mshaft g 285 

21 Disk mass mdisk g 200 

22 Rotor mass m g 685 

23 Masses of nodes 1 and 7 m1 = m7 g 15 

24 Masses of nodes 2 and 6 m2 = m6 g 35 

25 Masses of nodes 3 and 5 m3 = m5 g 80 

26 Mass of node 4 m4 g 25 

27 Gravitational acceleration g m/s2 9.81 

28 Moment of inertia Ip m4 1.2x10-7 
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Fig. 6 shows the vibration testing machine, designed and fabricated for study the vibration 

behavior of the rotating shaft. The shaft was driven by an AC motor and an encoder was 

attached to the motor spindle to record the actual speed of the rotating shaft. A laser sensor 

measured the displacement of the rotor. The accelerometer and processor recorded the amount 

and positions of unbalance on the rotor. The operating tests were performed in controlled 

modes. 

a) Model 3D  

2

1

3

4 5 6 7 8 9

 

b) Measurement setup of the rotating shaft 

1. Machine Pedestal – 2. Optical Sensor – 3. Acceleration Sensor – 4. Rotating shaft - 5. Motor – 6. 

Encoder –7. Measurement sensor LK-G35 – 8. DAQ – 9. Personal Computer 

Fig 6. A vibration testing machine of rotating shaft. 

29 Young's modulus E N/m2 2.1x1011 

30 Torsional modulus G N/m2 7.7x1010 

31 Damping of torsional shaft Ct Ns/rad 0 

32 Angular velocity ɷ3 rad/s 209 
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4. Results and Discussions 

4.1. The Effect of Rotational Speed on Shaft Displacement 

In Fig. 7, the rotor oscillates when operated arround the first critical speed (mode 1).  Under 

the effect of centrifugal force, the shaft is deflected and the shaft center will oscillate with 

displacement at position 4 with amplitude ymax.   

 

Fig 7. A schematic plot of a rotor operating at the first critical speed (mode 1). 

Neglecting the damping coefficient C, the first critical speed of the system can be 

determined according to [24] using the following expression: 

𝜔𝑐 = √
𝐾𝑟

𝑚
 = √

7 ∗ 107

685
= 319 rad/s 

In this case, the critical speed is: 

𝑛𝑐 =
60 ∗ 𝜔1

2 ∗ 𝜋
=

60 ∗ 319

2 ∗ 3.14
=  3047 rpm 

To ensure the stability of the rotor in the model and corresponding to the actual working 

speeds of the equipment, the experimental speed ranges of the rotor were selected as follows: 

n1 = 800 rpm, n2 = 1500 rpm and n3 = 2000 rpm, in which n3 is selected to be less than 70% of 

critical speed of 2132 rpm [25]. Figure 8 shows the displacement of node 4 in the X direction 

at speed of n3 = 2000 rpm, determined from the experiment and the Newmark–β numerical 

simulation. Generally, the amplitude measured from the experiment is larger than those using 

Newmark–β numerical computation because various factors in the manufacturing process may 

affect the unbalanced conditions.  
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Fig 8.  Displacement of node 4 along X-axis at 2000 rpm. 

Table 2 compares the X and Y displacement of node 4, determined from the Newmark-β 

method and from the experiment. The displacement determined experimentally is higher than 

those determined from the theoretical simulation because the actual stiffness of shaft and 

bearing is not uniform and due to the inaccuracy and clearance between shaft and bearing. For 

the eperation below the first critical speed, the vibrations remain stable, with displacement 

amplitudes of X = ± 0.046 and Y = ± 0.081. The relative error of displacement in the X- and 

Y-axes for speeds of 2000 rpm is 6% and 12%, respectively. As the rotor reaches the first 

critical speed of 3000 rpm, the vibrational amplitude significantly increases, with displacements 

of X= ± 0.101  and Y= ± 0.119 mm because of the resonance effects of the rotor components. 

In general, the displacement in the direction Y is higher than in the X direction because of the 

gravity force of the components, acting downward, resulting in the higher vertical vibration. 

The relative errors in displacements are higher by 12% and 18%.  
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Table 2. Displacement in the X and Y axes at node 4 

 

A comparison between the numerical results obtained using the Newmark–β method 

and the experimental data indicated that the displacement deviation of approximately 6%, 

which is acceptable for engineering analysis and validates the accuracy of the computational 

model. 

4.2. The Effect of Unbalance on Shaft Displacement 

In engineering, for some design circumstance or unavoidable eccentricity in the 

manufacturing process, the unbalance exists and should be taken into account. The unbalance, 

eccentricity, and angular position (the angle between the planes of trial masses m2 and m6) will 

be analyzed hereafter. The masses m2 and m6 were mounted at three positions 00–1800, 00–900, 

and 00–00 such that the direction of m6 respectively makes angular positions of 1800, 900 and 00 

to the direction of m2 , as shown in Fig 9. 

 

                    1. Trial mass – 2. Rotating shaft – 3. Disks 

Fig 9. Dimension of experimental unbalanced specimen. 

  

Frequency 

(Hz) 

Speed 

(rpm) 

Newmark- method Experimental data Relative Error 

X (mm) Y (mm) X (mm) Y (mm) X Y 

34 2000 ± 0.043 ± 0.071 ± 0.046 ± 0.081 6 % 12 % 

51 3000 ± 0.085 ± 0.097 ± 0.101 ± 0.119 15 % 18 % 
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4.2.1. Symmetrical Trial Mass (Angular Position: 00–00 on both disks) 

The structure of the unbalanced rotor is shown in Fig. 9, where the trial masses m2 and m6 

are in the same direction. According to the unbalance standard, the corresponding test masses 

considered in the range follows as G1, G2.5, G6.3 and G16 [26]. For G1, the allowable 

eccentricity e (n3 = 2000 rpm) is: 

𝑒 =  
𝐺

𝜔
=

1

209
= 4.78 ∗ 10−3 𝑚 

At the minimum speed n1, the allowable test mass for G16 is calculated as follows: 

𝑚𝑡𝑟𝑖𝑎𝑙 =  
𝑘 ∗ 9.54 ∗ 𝐺16 ∗ 𝑀𝑟𝑜𝑡𝑜𝑟

𝑛1 ∗ 𝑟
= 26.1 𝑔 

Three kinds of trial masses 10 g, 20 g, and 30 g and rotational speeds of 800, 1500 and 

2000 rpm were selected to determine the unbalanced, using the commercial Erbessd - 

Instruments interface, as shown in Fig 10. For the highest trial mass mtrial of 30 grams, the 

unbalanced amounts are respectively 41.18 mm/s and 39.06 mm/s for two nodes 2 and 6. 

 

Fig 10. The measurement results of balancing used to two planes at the angular position 

00-00; mtrial = 30 grams. 
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Table 3 represents the measurement results of rotor unbalance at angular position 00–00 

with corresponding to load values and speeds. The corresponding unbalance significantly 

increases with the increase of trial mass mtrial and the rotational speed n respectively. The 

unbalanced amount G was highest of approximately 41.1 mm/s at n of 2000 rpm with mtrial of 

30 g and got lowest of 0.58 mm/s at 800 rpm and mtrial of 0 g. 

Table 3. Unbalance measurement results when attaching trial mass at angular position 

00–00. 

 

 

 

 

 

 

 

 

  

Trial mass mtrial 

(grams) 

Speed 

(rpm) 

Amount of unbalance G 

(mm/s) 

0 

800 0.58 

1500 1.12 

2000 1.34 

10 

800 0.9 

1500 4.9 

2000 20.5 

20 

800 1.1 

1500 9.4 

2000 32.8 

30 

800 2.2 

1500 14.3 

2000 41.1 
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Fig 11 and Table 4 represent the variation in horizontal X-axis displacement at node 4 under 

different operating speeds. The results clearly show the displacement amplitude increase with 

the rotational speed, particularly as the rotor approaches its first critical speed. This behavior 

reflects a corresponding rise in dynamic excitation, which is characteristic of resonance 

phenomena in rotor-dynamic systems. 

 

Fig 11. Horizontal displacement of node 4 for mtrial = 20 g at various speeds.  

Table 4.  Displacement measurement results at node 4 for 20g trial mass. 

mtrial 

(grams) 

Speed 

(rpm) 

Displacement at x4 

(mm) 

20 

800 ± 0.055 

1500 ± 0.073 

2000 ± 0.098 
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4.2.2. Asymmetrically Placed Trial Mass (angular positions 00-900 and 00-

1800) 

By changing the initial phase angle, the results of rotor unbalance at positions 00-900 

and 00–1800 are shown in Table 5. At a constant rotational speed of 2000 rpm, variations in the 

load angular position 00–00, 00–900, and 00–1800 and trial mass mₜᵣᵢₐₗ of 10, 20, and 30g result 

in corresponding changes in the component unbalance. The experimental results indicate that 

the lowest unbalance of 2.6 mm/s occurs at a trial mass of 10 grams and angular positioned at 

00–1800. This is because the centrifugal forces of m2 and m6 canceled out. On the contrary, the 

unbalance G obtained the highest value of 42.3 mm/s at the  mass 30g and angular positioned 

at 00–00 because of the resonance of centrifugal forces of m2 and m6 .  

Table 5. Unbalance G and displacement at 2000 rpm for various trial masses and angular 

positions. 

Angular 

Position 

Trial mass mtrial 

(grams) 

Amount of 

unbalance G (mm/s) 

Displacement at 

x4 (mm) 

Displacement at 

y4 (mm) 

Original (without 

trial mass) 
0 1.34 ± 0.046 ± 0.081 

00 – 00 

00 – 900 

00 – 1800 

 

10 

20.5 

14.3 

2.6 

± 0.073 

± 0.064 

± 0.050 

± 0.100 

± 0.098 

± 0.085 

00 – 00 

00 – 900 

00 – 1800 

 

20 

32.8 

28.7 

3.7 

± 0.098 

± 0.079 

± 0.054 

± 0.111 

± 0.105 

± 0.090 

00 – 00 

00 – 900 

00 – 1800 

30 

42.3 

35.4 

4.2 

± 0.109 

± 0.090 

± 0.054 

± 0.135 

± 0.111 

± 0.096 



56 

 

In addition, Fig. 12 and Table 6 show a decreasing trend of displacement amplitudes by 

±0.098 mm, ± 0.079 mm, and ± 0.054 mm as the load position shifts from 00–00 to 00–900 and 

then to 00–1800, respectively.  

 

Fig 12. Horizontal displacement of node 4 under 20 g trial mass and speed of 2000 rpm, 

for the different angular positions: 00–00, 00–900, and 00–1800. 

Table 6.  Displacement measurement results under 20g load at 2000 rpm, with different 

load angular positions: 00–00, 00–900, and 00–1800. 

Speed 

(rpm) 

Angular 

Position 

Displacement at x4 

(mm) 

 

2000 

 

00 – 00 ± 0.098 

00 – 900 ± 0.079 

00 – 1800 ± 0.054 

 

4.3. Motional Orbit 

To evaluate the influence of the unbalanced mass position on the rotor’s motion trajectory, a 

series of experiments was conducted at a rotational speed of 2000 rpm. A trial mass 30g was 
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mounted on the two discs of the rotating shaft, with various combinations of phase angular 

positions between the loads. Three unbalanced mass distribution cases were investigated for 

three angular positions 00 – 00, 00 – 900 and 00 – 1800. The motion orbit of the shaft center at 

the speed n3 = 2000 rpm is represented in Fig. 13. The orbits for load-free rotation and the 

unbalanced masses in the opposite angular directions 00–1800 obtains the smallest value, while 

the orbit for angular position 00–00 is most unstable. This is because of the cancelation or 

resonance of centrifugal forces of the masses, well agreeing with the experimental 

displacements in Table 5. Furthermore, the data indicate that the oscillation observed with a 

trial mass of 30g for the angular position 00–00 closely resembles the shaft behavior at its first 

critical speed.  

 

Fig 13.  Motional orbit of the shaft center at 2000 rpm for various angular positions 

It can be observed that changes in the angular positions of the trial mass 0°–0°, 0°–90°, and 

0°–180° strongly affect the vibration amplitude, thus the shape of the shaft center orbit and well 

agrees to the expected behavior predicted based on the influence parameters. The greater amount 

of unbalance and their positions concentration will generate stress accumulation and micro-

cracks, resulting in shaft failure.  
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5. Conclusions 

The following conclusions are made:  

a. The effects of such key parameters as rotation speed, eccentricity due to unbalanced and 

initial phase angle during operation were simulated. The experimental equipment was built 

and experimental results were compared with the simulated data.   

b. The vibration becomes severely unstable when rotation speed approaches the critical speed, 

as shown in Tables 3 and 4. The displacement amplitude significantly increases with the 

amount of unbalance, as shown in Table 5.  

c. The initial phase angle of the trial mass position has great influence on the vibration of the 

rotating shaft, thus the fatigue bending strength and performance of the component, as 

shown in Tables 5 and 6 and Fig. 13. By determining the vibration and unbalance conditions 

of the shaft component, the fatigue limitation can be predicted to ensure the safety and long-

term stability of the rotor system. 

d. For operation under the critical speed, the unbalance analysis using the Newmark-β method 

well agrees with the experimental result, as represented in Table 2, showing that the 

Newmark-β method is a reliable and stable approach for analyzing the behavior of rotor-

bearing systems. This allows rapid and high computational efficiency to predict the shaft 

operation with fast convergence time.  

Further research may be proceeded on the following issues:  

i. Unbalance analysis for double-phase and composite materials. 

ii. Analysis for materials with thin films, coating layer or the surface layer with residual 

stress. 

iii. Unbalance analysis in high temperature conditions.  

 

Supporting information: Experimental data for Figures 8, 11, 12, and 13. 
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